有限要素法入門 〜要素剛性マトリクスの導出〜CAEを正しく使い疲労強度計算と有機的につなげる(4)(6/7 ページ)

» 2024年05月20日 09時00分 公開

ガウスの数値積分公式

 式39の積分はガウスの数値積分公式(参考文献[3])を使って近似計算します。ここでは次式の関数を積分するとしましょう。

式44 式44

 この積分の近似値は、図8で示した点の関数値を使って次式で求めることができます。

式45 式45[クリックで拡大]
ガウスの数値積分公式での計算点(積分点) 図8 ガウスの数値積分公式での計算点(積分点)[クリックで拡大]

 試しに、f(ξ,η)がξ、ηの2次式の場合を計算しましょう。式44の積分値は次式となります。

式46 式46

 では、式46に適当な数値を代入します。係数は表1とします。

被積分関数の係数 表1 被積分関数の係数[クリックで拡大]

 式46に数値を代入すると、積分値は16となりました。では、ガウスの数値積分公式で計算しましょう。表2に示すように積分値も16となりました。この近似積分計算は厳密値を出しました。

ガウスの数値積分公式による計算結果 表2 ガウスの数値積分公式による計算結果[クリックで拡大]

 ガウスの数値積分公式の一般形は次式です。

式47 式47

 計算点の位置は下図となります。前述した例では、関数がξ、ηの2次式でした。この場合は計算点数が2×2以上で計算値は積分の厳密値となります。関数がξ、ηの1次式だと計算点数は1×1で厳密解となり、関数がξ、ηの3次式だと計算点数は3×3で厳密解となります。計算点の位置を「積分点」といいます。

ガウスの数値積分公式での計算点(積分点) 図9 ガウスの数値積分公式での計算点(積分点)[クリックで拡大]

参考文献:


Copyright © ITmedia, Inc. All Rights Reserved.