デジタルツインを実現するCAEの真価

有限要素法入門 〜要素剛性マトリクスの導出〜CAEを正しく使い疲労強度計算と有機的につなげる(4)(2/7 ページ)

» 2024年05月20日 09時00分 公開

要素剛性マトリクスの導出

 では、要素剛性マトリクスを導出しましょう。2次元平面応力状態の要素に作用する力と変位を図3に示します。

三角形要素に作用する荷重と変位 図3 三角形要素に作用する荷重と変位[クリックで拡大]

 変位ベクトル、荷重ベクトル、剛性マトリクスで表すと次式となります。

式10 式10
式11 式11

 次に、仮想変位ベクトル{δ*}と仮想変位によるひずみベクトル{ε*}を次式で定義しましょう。ベクトルの肩に付いている「T」は転置行列という意味です。

式12 式12
式13 式13
式14 式14

 応力ベクトルは次式でした。

式15 式15

 図3に示すように外力は節点への集中荷重なので、式9-2Dの第1項の積分は次式となります。

式16 式16

 体積力はないものとして式9-2Dの第2項は無視します。式9-2Dの第3項は式14式15を代入すると次式となります。

式17 式17

 式16式17から式9-2Dは次式となります。

式18 式18

Copyright © ITmedia, Inc. All Rights Reserved.