• 関連の記事

「東北大学」関連の最新 ニュース・レビュー・解説 記事 まとめ

「東北大学」に関する情報が集まったページです。

テラヘルツ光学素子の実現目指す:
6G向けに3次元バルクメタマテリアルの屈折率特性を向上
東北大学の研究グループは、2層スプリットリング共振器を3次元的に不規則配置した「3次元バルクメタマテリアル」を開発した。6G(第6世代移動通信)に向けたメタマテリアルとして、屈折率特性をさらに向上させた。(2024/7/26)

研究開発の最前線:
表面処理で2次元、3次元半導体ヘテロ構造で電荷状態の制御に成功
東北大学は、2次元および3次元の半導体ヘテロ構造で、2次元半導体から3次元半導体への電子の移動効率の向上と、2次元半導体の電荷状態の制御に成功した。NTT物性科学基礎研究所と共同で研究していた。(2024/7/23)

研究開発の最前線:
ペロブスカイト型酸化物中の窒素ドーパントの定性、定量分析に成功
東北大学は、ペロブスカイト型酸化物中の窒素ドーパントの定性、定量分析に成功した。材料内部の窒素の導入形態を識別でき、詳細な分析が可能となる。(2024/7/18)

Beyond 5Gで容易にエリアを拡大:
高機能反射板による電波伝搬環境の改善効果を簡便に予測
東北大学は、英国サリー大学やノッティンガム大学と共同で、高機能反射板を用いた電波伝搬環境下における無線通信システムの性能を解析的に表現する手法を開発した。この手法を用いることで、複雑で時間を要する数値シミュレーションやコスト高となる実験を行わなくても、高機能反射板による電波伝搬環境の改善効果を予測できるという。(2024/7/17)

GaAs基板上に単層WS2を積層:
基板の表面処理で2次元半導体の電荷制御に成功
東北大学とNTT物性科学基礎研究所は、表面処理を施した3次元半導体に2次元半導体を積層することで、2次元半導体から3次元半導体への電子移動効率を向上させるとともに、2次元半導体の電荷状態を制御することに成功した。(2024/7/16)

研究開発の最前線:
擬一次元ファンデルワールス物質の大面積な薄膜を製造する新しい手法を開発
東北大学と慶應義塾大学は、ジルコニウムテルライドを用いて、大面積な薄膜を製造する新しい手法を開発した。「擬一次元ファンデルワールス物質」の1つで、半導体デバイスへの応用が注目される。(2024/7/11)

研究開発の最前線:
高価なナノ炭素を用いずスーパーキャパシター並みの容量を得られる電極を開発
東北大学は、高価なナノ炭素を使用せずに、スーパーキャパシター並みの容量を得られるキャパシター用電極を開発した。安全で安価な青色顔料の鉄アザフタロシアニンを活性炭に分子吸着し、電極を作製した。(2024/7/9)

研究開発の最前線:
ナノ秒近辺での原子、分子運動を観測する放射光X線分光型測定技術を開発
東北大学らは、ナノ秒近辺での原子、分子運動を観測する放射光X線分光型測定技術を開発した。次世代2次元X線カメラを使用すれば、動いているものの時間スケールだけでなく、空間的な大きさも同時に測定できる。(2024/7/17)

907F/gACの比静電容量を達成:
安価にキャパシター容量を向上させる電極を開発
東北大学とAZUL Energyらによる研究グループは、鉄アザフタロシアニン(FeAzPc-4N)を活性炭にまぶし、分子レベルで吸着させたキャパシター用電極を開発した。この電極を用いれば、ナノ炭素を用いるスーパーキャパシター並みの容量を安価に実現できるという。(2024/6/27)

スマートファクトリー:
ローカル5Gとキャリア網併用でも安定化する無線通信、トヨタ宮城大衡工場で実証
NICT、NEC、東北大学、トヨタ自動車東日本は、SRF無線プラットフォームを用い、東北地区で初めて、キャリア網(LTE/5G)とローカル5Gによるハイブリッドネットワークを活用した移動体との無線通信安定化実証を行う。(2024/6/18)

研究開発の最前線:
超微細金属酸化物粒子を精密に合成する手法を開発し、特異な電子状態を発見
東北大学と筑波大学は、これまで困難だった5nm以下の超微細な金属酸化物粒子を精密に合成する手法を開発した。放射光軟X線分光での解析により、構造歪が誘起する特異な電子状態が確認された。(2024/6/18)

研究開発の最前線:
海藻によるブルーカーボンの活用に向けたコア技術の委託事業に採択
東北大学が代表機関を務めるコンソーシアムが、福島国際研究教育機構の委託事業「ネガティブエミッションのコア技術の研究開発・実証」に採択された。同大学のほか、鹿島建設と日本エヌ・ユー・エスが参画している。(2024/6/13)

大規模量子コンピュータ向け:
量子ビット制御超伝導回路を提案、原理実証に成功
産業技術総合研究所(産総研)は、横浜国立大学や東北大学、NECと共同で、大規模量子コンピュータに向けた量子ビット制御超伝導回路を提案し、原理実証に成功した。1本のマイクロ波ケーブルで1000個以上の量子ビットを制御することが可能となる。(2024/6/7)

LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(4):
超臨界流体技術の進展がリチウムイオン電池リサイクル工業化の決め手になる
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。第4回では「JST未来創造事業の実施内容」を取り上げる。(2024/6/13)

研究開発の最前線:
手すき和紙と生分解性プラスチックを組み合わせ、新しい複合材料を開発
東北大学は、手すき和紙と生分解性プラスチックを組み合わせ、新しい複合材料を開発した。強度が向上し、コンポスト中で5週間後には80%以上を生分解できることから、新たな用途の拡大が期待される。(2024/5/30)

研究開発の最前線:
高輝度放射光施設のNanoTerasuを活用する産学共創の研究施設を設立
東北大学は、産学共創の研究施設「NAGASE×東北大学 Delivering next.共創研究所」を設立する。共創パートナーとなる長瀬産業は、3GeV高輝度放射光施設「NanoTerasu(ナノテラス)」を活用する考えだ。(2024/5/27)

量子コンピュータなどの分野に期待:
超伝導の性質を示す岩塩型酸化ニオブを合成、転移温度は最高7.4Kに
東北大学の研究グループは、東京大学と共同で岩塩型NbO(酸化ニオブ)の合成に成功した。得られた岩塩型NbOは超伝導の性質を示し、転移温度は最高7.4Kであった。(2024/5/22)

研究開発の最前線:
ナノスケールで強誘電体における分極反転挙動の観察手法を開発
東北大学と東京工業大学は、新しい顕微鏡手法「局所C-Vマッピング法」を開発した。ナノスケールの空間分解能で、強誘電体における分極反転電圧の面内のばらつきを観察できる。(2024/5/22)

研究開発の最前線:
ブリヂストンがNanoTerasuを活用し材料や効率的なゴムリサイクル技術の開発を加速
ブリヂストンは、東北大学青葉山新キャンパス内に設けられた3GeV高輝度放射光施設「NanoTerasu(ナノテラス)」を活用しタイヤ材料の研究開発を開始した。(2024/5/20)

「難関国立大」現役合格率ランキング 上位の特徴は?
今回は卒業生に占める難関国立大現役合格者の割合を比較した、「難関国立大現役合格率ランク」をお届けする。対象大学は、東大、京大、北海道大、東北大、名古屋大、大阪大、九州大、東京工業大、一橋大の9大学。(2024/5/17)

緑内障の早期発見へゲームアプリと医療行為を連動 東北大などが日本初の試み
失明率の高い緑内障の早期発見・治療を可能にするため、東北大と仙台放送、日本生命、仙台市は16日、視野をチェックできるスマートフォン用のゲームアプリ「メテオブラスター」VR版と移動眼科検診を連動させた取り組みを5月からスタートすると発表した。ゲームアプリと医療行為を一体化させるのは日本初の試みという。(2024/5/17)

キュリー温度は最高303K:
室温で強磁性を示す希土類酸化物を発見、スピントロニクス材料として期待
東北大学や東京都立大学、東京大学らによる研究グループは、準安定で高純度の酸化ガドリニウム(GdO)薄膜の合成に成功。このGdOが強磁性体で、キュリー温度は最高303K(30℃)であることを確認した。(2024/5/21)

産学連携の促進に向け:
東北大学が研究者/特許情報を公開――「サイエンスパーク構想」の狙いとは
東北大学と三井不動産は2024年4月26日、「東北大学サイエンスパーク構想」に関する合同説明会を実施した。両者は、「共創の場」の構築とコミュニティーの形成を中心とした産学連携により、社会課題解決と新産業創造を目指す。(2024/5/15)

TlBrを用いて高精細、高感度を実現:
「ニボシの中身がよく見える」 直接変換型X線イメージセンサーの作製技術を確立
東京大学と東北大学はジャパンディスプレイ(JDI)と協力し、臭化タリウム(TlBr)を用いて、高精細・高感度の「直接変換型X線イメージセンサー」を作製する手法を確立した。超大型X線イメージセンサーやフレキシブルセンサーなどに適用していく。(2024/5/17)

新たな物理現象を生み出す原動力に:
ハイブリッド磁性体で強いフラストレーションを実現
東京大学と東北大学は、英ラフバラー大学や独ライプニッツ固体・材料研究所と共同で、有機分子と硫酸銅が積層した有機無機ハイブリッド物質の磁気的性質を調査し、幾何学的フラストレーションの効果が極めて強い二次元磁性体であることを明らかにした。(2024/5/10)

従来法に比べ観察時間も大幅短縮:
強誘電体の分極反転挙動をナノスケールで観測
東北大学と東京工業大学の研究グループは、強誘電体の分極反転挙動をナノスケールの空間分解能で、かつ短時間に観測できる顕微鏡手法を開発した。材料特性の改善や新たなデバイスの開発につながるとみられる。(2024/5/7)

レアメタルフリーで高性能化:
リチウムイオン電池鉄系正極材料、高容量で高サイクル寿命
北海道大学と東北大学、名古屋工業大学の研究グループは、鉄を主成分とする「リチウムイオン電池正極材料」を開発、高容量で高サイクル寿命を両立させることに成功した。(2024/5/1)

研究開発の最前線:
東北大学サイエンスパーク構想が本格始動、優秀な研究者と共創できる仕組みとは?
東北大学と三井不動産は、両者のパートナーシップによる「東北大学サイエンスパーク構想」を本格始動したと発表した。(2024/4/30)

30分間、4万気圧、900℃で熱処理:
ペロブスカイト型ニオブ酸ルビジウムを高圧で合成 新たな強誘電体開発の鍵に
芝浦工業大学は、ファインセラミックスセンターや東北大学、学習院大学、東京大学と共同で、高圧法により「直方晶ペロブスカイト型のニオブ酸ルビジウム」を合成することに成功した。(2024/4/30)

LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(3):
廃棄リチウムイオン電池から環境に優しくレアメタルを回収する水熱有機酸浸出
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。第3回では環境にやさしいクエン酸などを用いた水熱有機酸浸出の事例を取り上げる。(2024/4/25)

研究開発の最前線:
蟹殻が半導体や蓄電池に利用できる可能性を発見
東北大学は、キトサンのナノファイバーシートが、半導体特性と蓄電特性を有することを発見した。キトサンは、通常は廃棄される蟹殻などから得られるバイオマス化合物だ。(2024/5/1)

研究開発の最前線:
無機材料表面の性質予測に理論計算と機械学習を用いる新たな手法を開発
東北大学は、無機材料表面の性質予測に理論計算と機械学習を用いる新たな手法を開発した。表面に吸着する不純物などの影響を除去して、無機材料表面の基本的な電子構造を、高精度かつ網羅的に予測できる。(2024/4/16)

半導体回路+スピントロニクス素子で:
東北大ら、「近未来版」の確率論的コンピュータを開発
東北大学と米国カリフォルニア大学サンタバーバラ校らの研究チームは、確率的なアルゴリズムを効率よく実行でき、製造も比較的容易な「近未来版の確率論的コンピュータ」を開発、その動作を検証した。「最終形態の確率論的コンピュータ」では、現行の半導体コンピュータに比べ、面積を約4桁、エネルギー消費を3桁、それぞれ削減できることを確認した。(2024/4/12)

医療技術ニュース:
骨再生材料であるリン酸八カルシウムの量産化に成功
日本ファインセラミックスと東北大学は、骨の再生能力に優れ、生体吸収性が高い骨再生材料「リン酸八カルシウム」の量産化に成功し、サンプル出荷を開始した。(2024/4/10)

脱炭素:
鹿島と東北大が「環境配慮型建材」の研究所を開設 CO2排出量を削減する新材料の開発促進
鹿島建設と東北大学は、インフラストラクチャの建設段階のCO2排出量削減を目的に、環境配慮型建設材料を開発する研究所を、宮城県仙台市の東北大キャンパス内に開設した。CO2の排出量低減や吸収/固定化材料の実用化に加え、環境配慮型建設材料の安定供給を目指す。(2024/4/9)

LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(2):
グリーン溶媒と水熱条件の基礎知識、LiFePO4からリチウムを回収する流通式水熱装置
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。第2回ではグリーン溶媒と水熱条件の基礎知識や著者の研究室で利用している流通式水熱装置について紹介する。(2024/4/10)

復興の象徴:
東北大をイノベーションの中心地に 放射光施設「ナノテラス」が生みだす共創の場
4月9日、東北大学が誇る世界最高レベルの高輝度放射光施設「NanoTerasu(ナノテラス)」が始動する。その背景には、東日本大震災からの「復興の象徴」として東北の経済を盛り上げたいとの思いから、10年以上も奔走してきた、ある教授の使命感があった。ナノテラス誕生の舞台裏と、今後のビジョンを聞く。(2024/4/4)

研究開発の最前線:
環境に優しい素材から成り塩水で駆動する金属空気紙電池を開発
東北大学は、低環境負荷の「金属空気紙電池」を開発した。身近にある塩水で発電し、マグネシウムや紙、炭素など、環境に優しい素材で構成されていることから、ウェアラブルデバイスや非常用電源などへの応用が期待される。(2024/4/4)

n型半導体特性を確認:
廃棄される「ズワイガニ」が半導体材料に、東北大学らが発見
東北大学は2024年3月25日、カニ殻から得られるキトサンのナノファイバーシートが、直流/交流変換、スイッチング効果、整流作用などの半導体特性と蓄電効果を発現することを発見したと発表した。(2024/4/2)

多値記録で10Tビット/in2を超える:
磁気記録媒体を3次元化、HDDの容量拡大が可能に
物質・材料研究機構(NIMS)と米国Seagate Technology、東北大学の研究グループは、磁気記録媒体を3次元化すれば、ハードディスクドライブ(HDD)で多値記録ができることを実証した。10Tビット/in2を超える高密度磁気記録が可能となる。(2024/4/2)

「半導体人材」育成に注力 東北大、熊本大の連携で狙う「世界最先端の研究」
伝統的に半導体分野に強みを持つ東北大と、新課程を始めるなど半導体研究に活路を見いだした熊本大の連携によって、産業界に優秀な人材を輩出していくことになりそうだ。(2024/3/29)

研究開発の最前線:
レーザー光によりナノメートルスケールで微細加工する技術を開発
東北大学は、レーザー光によりナノメートルスケールで微細加工する技術を開発した。従来よりも微小なスケールで穴あけや線描加工ができるため、半導体加工技術への展開が期待される。(2024/3/27)

研究開発の最前線:
二酸化バナジウムの薄膜における水素の拡散運動を原子レベルで解明
東北大学は、二酸化バナジウムの薄膜における水素の拡散運動を原子レベルで解明した。室温付近で電気抵抗が大きく変化する特性から、次世代半導体デバイス材料として注目されている。(2024/3/26)

「イオンモール仙台雨宮」25年秋にオープン 旧東北大学・雨宮キャンパスの跡地に
イオンモールは、ショッピングモール「イオンモール仙台雨宮(仮称)」の建築工事に着手したと発表した(2024/3/24)

東北大学が開発:
低温でも充放電が可能に マグネシウム蓄電池向けの新たな正極材料
東北大学は、マグネシウム蓄電池(RMB)に向けて、岩塩型構造の新たな正極材料を開発した。90℃という低温でマグネシウム(Mg)の挿入や脱離ができることを実証した。(2024/3/22)

研究開発の最前線:
次世代コンタクトレンズの基盤技術に関する共同研究を開始
東北大学は、東京大学、メニコンと共同で、2024年4月より「次世代コンタクトレンズ及びコンタクトレンズの流通・製造に関する基盤技術構築」に向けた研究を開始する。(2024/3/21)

研究開発の最前線:
スピン波を用いた物理リザバー計算機における高性能化の条件を解明
東北大学は、スピン波を用いた物理リザバー計算機の学習性能向上に必要な波の速度と素子サイズの関係を解明した。検証の結果、少ない入出力ノード数で、短期記憶と非線形変換能力を持った学習が可能であることが判明した。(2024/3/18)

医療技術ニュース:
AIによる医用画像診断の根拠が専門医の所見と一致するとは限らない
東北大学は、深層学習モデルが医用画像を診断した際の根拠と専門医の所見との一致度は必ずしも高くないことを確認した。医学的に妥当でない根拠は思わぬ診断結果を招く危険があるため、安全なAIの開発が期待される。(2024/3/18)

らせん磁性体のマンガン金合金を利用:
磁気メモリの高集積化を可能にする技術 東北大らが開発
東北大学と東邦大学の共同研究グループは、らせん磁性体のねじり方向「キラリティー」を室温で制御/検出できる、「マンガン金合金(MnAu2)薄膜」を開発した。ビット間干渉がなく高集積かつ堅固な磁気メモリを実現することが可能となる。(2024/3/15)

研究開発の最前線:
お椀形状の単一分子から、異なる誘電応答性を示す結晶を作成
東北大学は、単一分子のみを用いて、異なる誘電応答性を示す結晶を作成することに成功した。省プロセスかつ省コストで、物性を制御可能な誘電材料の開発につながることが期待される。(2024/3/15)


サービス終了のお知らせ

この度「質問!ITmedia」は、誠に勝手ながら2020年9月30日(水)をもちまして、サービスを終了することといたしました。長きに渡るご愛顧に御礼申し上げます。これまでご利用いただいてまいりました皆様にはご不便をおかけいたしますが、ご理解のほどお願い申し上げます。≫「質問!ITmedia」サービス終了のお知らせ

にわかに地球規模のトピックとなった新型コロナウイルス。健康被害も心配だが、全国規模での臨時休校、マスクやトイレットペーパーの品薄など市民の日常生活への影響も大きくなっている。これに対し企業からの支援策の発表も相次いでいるが、特に今回は子供向けのコンテンツの無料提供の動きが顕著なようだ。一方産業面では、観光や小売、飲食業等が特に大きな影響を受けている。通常の企業運営においても面会や通勤の場がリスク視され、サーモグラフィやWeb会議ツールの活用、テレワークの実現などテクノロジーによるリスク回避策への注目が高まっている。