リチウムイオン電池リサイクル技術の現在地LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(6)(4/4 ページ)

» 2024年09月26日 07時30分 公開
前のページへ 1|2|3|4       

5 最後に

 当該連載記事では全体を通して、リチウムイオン電池のリサイクル技術に水熱技術のみならず、超臨界CO2が活用できることを説明してきた。筆者の研究グループの検討もいまだ基礎研究の域を出ていないものが多いが、一部実用化に向けて、連続実証および大型化に向けた検討も進めている。

 グリーン溶媒としての水熱技術や超臨界CO2技術については、資源再生利用技術としてプラスチックリサイクル、特にマテリアルおよびケミカルリサイクルへの応用が期待されている[参考文献67〜72]。

 また電池関連技術に関して、太陽光パネルの積層構造で利用する、エチレン酢酸ビニール「Poly(ethylene-co-vinyl acetate、EVA)」に、超臨界CO2の溶解性と圧力変化を用いた膨張性を活用することで、ガラスと基盤の剥離が可能であることも報告されている[参考文献73〜75]。

 リサイクル技術は全般的に、隣国である韓国での発展が目覚ましい。また、欧州電池規制に加え、自動車に利用するプラスチックに関して、25%をリサイクル品としなければならいといった規制も適用される。こうした背景から、各国にて基礎研究から実証、さらには実用化に向けた検討が進められている。資源循環の要点は、消費〜回収〜再生〜利用において物流を含めたバリューチェーンの構築にある。従って、産官学ならびに金融、社会システムなど包括的に資源循環を進める検証も併せて推進する必要がある[参考文献76〜78]。

 いずれにしても、資源循環には、関連産業や消費者ニーズ、社会情勢などの社会的/経済的状況の変化に敏感に対応する必要があるが、技術開発は継続して進める必要がある。

 選択肢を複数持つことは、その関連分野に対する科学技術が発展していることを示し、そのことは継続して人材育成がなされていたことにも大きく関与する。こうした観点においても、水とCO2を多くの技術分野に適用すべく、超臨界流体技術は将来にわたり大きな意味を持つことは間違いない。

 この分野において我が国は、世界に比べても多くの技術、ノウハウ、人材を有する。この利点を生かすことにより、世界の資源循環を先導することができ、それは国益に直結することになる。この連載が、こうした望ましい技術開発分野の発展に寄与することができれば、筆者にとって望外の喜びである。

 この連載を企画してくださった編集担当者、この連載をする機会を与えてくださった環境再生保全機構(ERCA)担当者、そしてお読みいただいた読者各位に、心から感謝申し上げます。なお、当該連載で紹介させていただいた研究内容は、科学技術振興機構(JST)、新エネルギー・産業技術総合開発機構(NEDO)、そしてERCAそれぞれからの研究資金を活用させていただいていることを示し、謝意を表します。<完>

⇒ 連載バックナンバーはこちら

筆者代表紹介

東北大学大学院工学研究科 附属超臨界溶媒工学研究センター 化学工学専攻 教授 渡邉賢(わたなべまさる)

東北大学大学院工学研究科附属超臨界溶媒工学研究センターにて、水熱・超臨界水を反応・分離媒体とした重質油改質、廃プラスチックリサイクル、バイオマス変換の研究を推進するとともに、超臨界二酸化炭素を反応・分離溶媒とした天然物からの有価物回収や二酸化炭素固定化反応に関する検討を進めている。化学工学会会員。The International Society of the Advanced Supercritical Fluid副会長。


参考文献:

  • [1]Paul Anastas, Nicolas Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev., 39 (2010) 301〜312
  • [2]Erfan Rezvani Ghomi, Fatemeh Khosravi, Mohammad Amin Tahavori, Seeram Ramakrishna, Circular Economy: a Comparison Between the Case of Singapore and France, Materials Circular Economy, 3 (2021) 2
  • [3]相川達也, 渡邉賢, 相田卓, Richard L. Smith Jr., 硫酸,硝酸およびクエン酸を用いたコバルト酸リチウムの水熱酸浸出, 化学工学論文集, 43 (2017) 313-318
  • [4]相川達也, 東大輝, 渡邉賢, Richard L. Smith Jr., 有機酸を添加したマイクロ波加熱水熱酸浸出によるリチウム電池正極材料(LiCoO2)のリサイクル, 日本電磁波エネルギー応用学会論文誌, 1 (2017) 1-8
  • [5]東 大輝, 相川 達也, 平賀 佑也, 渡邉 賢, Richard Lee Smith Jr., クエン酸を用いたコバルト酸リチウムの水熱酸浸出における速度論解析, 化学工学論文集, 45 (2019) 147〜157
  • [6]柴崎絢祐, 東大輝, 渡邉賢, 平賀佑也, Richard L. Smith Jr, 宮崎秀喜, 実リチウムイオン電池廃棄物に対する水熱法を用いた構成金属の有機酸浸出, 化学工学論文集, 46 (2020) 167〜175
  • [7]Qingxin Zheng, Masaru Watanabe, Yuta Iwatate, Daiki Azuma, Kensuke Shibazaki, Yuya Hiraga, Atsushi Kishita, Yuta Nakayasu, Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study, The Journal of Supercritical Fluids, 165 (2020) 104990
  • [8]Qingxin Zheng, Kensuke Shibazaki, Tetsufumi Ogawa, Atsushi Kishita, Yuya Hiraga, Yuta Nakayasu, Masaru Watanabe, Continuous hydrothermal leaching of LiCoO2 cathode materials by using citric acid, Reaction Chemistry & Engineering, 5 (2020) 2148-2154
  • [9]Qingxin Zheng, Kensuke Shibazaki, Seiya Hirama, Yuta Iwatate, Atsushi Kishita, Yuya Hiraga, Yuta Nakayasu, Masaru Watanabe, Glycine-assisted hydrothermal leaching of LiCoO2/LiNiO2 cathode materials with high efficiency and negligible acid corrosion employing batch and continuous flow system, ACS Sustainable Chemistry & Engineering, 9 (2021) 3246〜3257
  • [10]Qingxin Zheng, Kensuke Shibazaki, Tetsufumi Ogawa, Atsushi Kishita, Yuya Hiraga1, Yuta Nakayasu, Masaru Watanabe, Application of Hydrothermal Leaching Technology to Spent LIB Cathode Materials with Citric Acid Using Batch-type Device and Flow System, Journal of Chemical Engineering of Japan, 54 (2021) 344-350
  • [11]Qingxin Zheng, Kensuke Shibazaki, Tetsufumi Ogawa, Masaru Watanabe, Single-step recovery of divalent Mn component from LiMn2O4 cathode material at hydrothermal conditions as an Mn-citrate complex, ACS Sustainable Chemistry & Engineering, 9 (2021) 10970〜10976
  • [12]Akitoshi Nakajima, Qingxin Zheng, Tetsufumi Ogawa Seiya Hirama, Masaru Watanabe, Metal Recovery of LiCoO2/LiNiO2 Cathode Materials by Hydrothermal Leaching and Precipitation Separation, ACS Sustainable Chemistry & Engineering, 10 (2022) 12852〜12863
  • [13]Qingxin Zheng, Seiya Hirama, Akitoshi Nakajima, Tetsufumi Ogawa, Yuta Nakayasu, Zixian Li, Masaru Watanabe, Excellent Performance of Glycine in Isolating Mn during Hydrothermal Leaching of LiMn2O4 Cathode Materials, ACS Sustainable Chemistry & Engineering, 11 (2023) 13033〜13042
  • [14]Zixian Li, Qingxin Zheng, Akitoshi Nakajima, Zhengyang Zhang, and Masaru Watanabe, Organic Acid-Based Hydrothermal Leaching of LiFePO4 Cathode Materials, Advanced Sustainable Systems, 8 2024) 2300421
  • [15]マンガン及びニッケルの分離方法, 特願2019-151440
  • [16]レアメタルの浸出方法及びレアメタルの分離方法, 特願2019-166322
  • [17]クエン酸マンガンの製造方法, 特願2021-075442
  • [18]Yasuto Goto, Yuta Nakayasu, Hiroya Abe, Yuto Katsuyama, Takashi Itoh and Masaru Watanabe, Synthesis of Unused-wood-derived C-Fe-N Catalysts for Oxygen Reduction Reaction by Heteroatom Doping During Hydrothermal Carbonisation and Subsequent Carbonisation in Nitrogen Atmosphere, Philosophical Transactions of the Royal Society A, doi.org/10.1098/rsta.2020.0348
  • [19]Yuta Nakayasu, Yasuto Goto, Yuto Katsuyama, Takashi Itoh, Masaru Watanabe, Highly crystalline graphite-like carbon from wood via low-temperature catalytic graphitization, Carbon Trends, 8 (2022) 100190
  • [20]Hiroya Abe, Yuta Nakayasu, Kazutoshi Haga, Masaru Watanabe, Progress on Separation and Hydrothermal Carbonization of Rice Husk Toward Environmental Applications, Global Challenges. 7 (2023) 2300112
  • [21]Shubin Wang, Chao Wang, Fengjiao Lai, Feng Yan, Zuotai Zhang, Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts, Waste Management 102 (2020) 122〜130
  • [22]Xin Tanga, Wei Tangb, Jidong Duana, Wenping Yanga, Rui Wanga, Manqin Tanga, Jing Li, Recovery of valuable metals and modification of cathode materials from spent lithium-ion batteries, Journal of Alloys and Compounds 874 (2021) 159853
  • [23]Jiaxin Zhu, Guanghui Guo, Jie Wu, Xiangyu Cheng, Yukun Cheng, Recycling and reutilization of LiNi0.6Co0.2Mn0.2O2 cathode materials from spent lithium‐ion battery, Ionics 28 (2022) 241〜250
  • [24] Kai Yang, Jie Li, Wenlong Huang, Chengping Zhu, Zhongliang Tian, Xinye Zhu, Zhao Fang, A closed-circuit cycle process for recovery of carbon and valuable components from spent carbon cathode by hydrothermal acid-leaching method, Journal of Environmental Management 318 (2022) 115503
  • [25]Weiguang Lv, Jin Zhang, Yunpeng Liu, Jiao Lin, Xiaohong Zhenga, Wenyi Yan, Hongbin Cao, Yi Zhang, Zhi Sun, Selective recovery of lithium from spent lithium-ion batteries via mild hydrothermal driven Lewis acid-base reaction in aqua solution, Resources, Conservation & Recycling 199 (2023) 107258
  • [26]Guisheng Zeng, Jia Hu, Chunli Liu, Guoyao Li, Jinxiang Yu, Jianbin Xu, Pengfei Liu, Zhongbing Wang, Chunjian Deng, Xubiao Luo, Selective recycling lithium from spent lithium batteries using carbonate ester derived from electrolyte in hydrothermal environments, Resources, Conservation & Recycling 204 (2024) 107480
  • [27]Yang Shi, Gen Chen, Zheng Chen, Effective regeneration of LiCoO2 from spent lithium-ion batteries: a direct approach towards high-performance active particles, Green Chemistry, 20 (2018) 851
  • [28]Han Wang, Jay F. Whitacre, Direct Recycling of Aged LiMn2O4 Cathode Materials used in Aqueous Lithium-ion Batteries: Processes and Sensitivities, Energy Technology, 6 (2018) 2429 〜 2437
  • [29]Jinyi Yanga, Kai Zhou, Rui Gong, Qi Meng, Yingjie Zhanga, Peng Dong, Direct regeneration of spent LiFePO4 materials via a green and economical one-step hydrothermal process, Journal of Environmental Management 348 (2023) 119384
  • [30]Hongpeng Gao, Shun Wang, Tao Chen, Junjie Fan, Xiaoxiao Wang, Direct regeneration of spent LiCoO2 cathode materials via hydrothermal method using glycine, ACS Sustainable Chemistry & Engineering, 11 (2023) 10292〜10300
  • [31]Yaqing Guo, Xiaobin Liao, Pengjie Huang, Ping Lou, Yaqiong Suc, Xufeng Hong, Qigao Han, Ruohan Yu, Yuan-Cheng Cao, Shijie Chen, HighreversibilityoflayeredoxidecathodeenabledbydirectRe-generation, EnergyStorageMaterials43(2021)348〜357
  • [32]Ping Lou, Minyuan Guan, Guoqiang Wu, Jian Wu, Haisheng Yu, Weixin Zhang, Qi Cheng, Recycle cathode materials from spent lithium‐ion batteries by an innovative method, Ionics, 28 (2022) 2135〜2141
  • [33]Md. Sajibul, Alam Bhuyan, Hosop Shin, Fundamental Investigation of Direct Cathode Regeneration Using Chemically Delithiated Lithium Cobalt Oxides, Journal of The Electrochemical Society, 169 (2022) 110507
  • [34]Xiaolu Yu, Sicen Yu, Zhenzhen Yang, Hongpeng Gao, Panpan Xu, Guorui Cai, Satchit Rose, Christopher Brooks, Ping Liu, Zheng Chen, Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes, Energy Storage Materials 51 (2022) 54〜62
  • [35]Zhenyu Jiang, Jing Sun, Pingshan Jia, Wenlong Wang, Zhanlong Song, Xiqiang Zhao and Yanpeng Mao, A sustainable strategy for spent Li-ion battery regeneration: microwave-hydrothermal relithiation complemented with anode-revived graphene to construct a LiFePO4/MWrGO cathode material, Sustainable Energy Fuels, 6 (2022) 2207〜2222
  • [36]Biaobing Chen, Min Liu, Shuang Cao, Hui Hu, Gairong Chen, Xiaowei Guo, Xianyou Wang, Direct regeneration and performance of spent LiFePO4 via a green efficient hydrothermal technique, Journal of Alloys and Compounds 924 (2022) 166487
  • [37]Yang Liu, Hongjian Yu, Yue Wang, Dan Tang, Weixin Qiu, Wenzhang Li, Jie Li, Microwave hydrothermal renovating and reassembling spent lithium cobalt oxide for lithium-ion battery, Waste Management 143 (2022) 186〜194
  • [38]Liuyang Yu, Xiaobin Liu, Shanshan Feng, Shengzhe Jia, Yuan Zhang, Jiaxuan Zhu, Weiwei Tanga, jingkang Wanga, Junbo Gong, Recent progress on sustainable recycling of spent lithium-ion battery: Efficient and closed-loop regeneration strategies for high-capacity layered NCM cathode materials, Chemical Engineering Journal 476 (2023) 146733
  • [39]Weizhe Liu, Zhiqiang Zheng, Yukun Zhang, Xinhong Zhao, Zhanghua Fu, Jiajia Ye, Xuting Li, Yongkang Li, Cheng Hu, Regeneration of LiNixCoyMnzO2 cathode materials from spent lithium-ion batteries: A review, Journal of Alloys and Compounds 963 (2023) 171130
  • [40]Zitong Fei, Yusen Xing, Peng Dong, Qi Meng, Yingjie Zhang, Efficient Direct Regeneration of Spent LiCoO2 Cathode Materials by Oxidative Hydrothermal Solution, https://doi.org/10.1007/s11837-023-05941-0
  • [41]Yingpan Yang, Zixiao Liu, Jialiang Zhang, Yongqiang Chen, Chengyan Wang, Economical and low-carbon regeneration of spent LiFePO4 materials by hydrothermal relithiation, Journal of Alloys and Compounds 947 (2023) 169660
  • [42]Binglei Jiao, Panpan Xu, Yinhai Liu, Yuxuan Liu, Gaolei Wei, Yuncheng Zhu, Gangfeng Liu, Xiao Lin, Jinxing Chen, Xuefei Weng, Yimin Ding, Jiangtao Di, Qingwen Li, Direct Regeneration of NCM Cathode Material with Aluminum Scraps, Chem Asian J., 18 (2023) e202300557
  • [43]Yang Cao, Junfeng Li, Haocheng Ji, Xijun Wei, Guangmin Zhou, Hui-Ming Cheng, A review of direct recycling methods for spent lithium-ion batteries, Energy Storage Materials 70 (2024) 103475
  • [44]Muhammed Ihsan Ozgun, Ahmet Burcin Batibay, Bayram Unal, Yasin Ramazan Eker, Arslan Terlemez, Effect of various mineral acids during the hydrothermal leaching process of NiTi Alloy, Pamukkale Univ Muh Bilim Derg, 29 (2023) 553-559
  • [45]Yulai Zhang, Xiaodong Li, Xiangping Chen, Risto Koivula, Junhua Xu, Tunnel manganese oxides prepared using recovered LiMn2O4 from spent lithium-ion batteries: Co adsorption behavior and mechanism, Journal of Hazardous Materials 425 (2022) 127957
  • [46]Daniel A. Bertuol, Caroline M. Machado, Mariana L. Silva, Camila O. Calgaro, Guilherme L. Dotto, Eduardo H. Tanabe, Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction, Waste Management 51 (2016) 245〜251
  • [47]Jiakai Zhang, Gisele Azimi, Recycling of lithium, cobalt, nickel, and manganese from end-of-life lithium-ion battery of an electric vehicle using supercritical carbon dioxide, Resources, Conservation & Recycling 187 (2022) 106628
  • [48]Lilian Schwich, Tom Schubert, Bernd Friedrich, Early-Stage Recovery of Lithium from Tailored Thermal Conditioned Black Mass Part I: Mobilizing Lithium via Supercritical CO2-Carbonation, Metals, 11 (2021) 177
  • [49]Sandra Pavon, Doreen Kaiser, Robert Mende, Martin Bertau, The COOL-Process〜A Selective Approach for Recycling Lithium Batteries, Metals, 11(2021) 259
  • [50]Robert Mende, Doreen Kaiser, Sandra Pavon, Martin Bertau, The COOL Process: A Holistic Approach Towards Lithium Recycling, Waste and Biomass Valorization, 14 (2023) 3027〜3042
  • [51]Joshua Vauloup, Cecile Bouilhac, Moulay Tahar Sougratia, Lorenzo Stievano, Nicolas Coppey, Andrea Zitolo, Laure Monconduit, Patrick Lacroix-Desmazes, Lithium and cobalt extraction from LiCoO2 assisted by p(VBPDA-co-FDA) copolymers in supercritical CO2, Waste Management 181 (2024) 199〜210
  • [52]Martin Grutzke, Vadim Kraft, Waldemar Weber, Christian Wendt, Alex Friesen, Sebastian Klamor, Martin Winter, Sascha Nowak, Supercritical carbon dioxide extraction of lithium-ion battery electrolytes, J. of Supercritical Fluids 94 (2014) 216〜222
  • [53]Yuanlong Liu, Deying Mu, Rujuan Zheng, Changsong Dai, Supercritical CO2 extraction of organic carbonate- based electrolytes of lithium-ion batteries, RSC Advances, 4 (2014) 54525
  • [54]Martin Gru tzke, Xaver Mo nnighoff, Fabian Horsthemke, Vadim Kraft, Martin Winter, Sascha Nowak, Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents, RSC Adv., 5 (2015) 43209
  • [55]Sergej Rothermel, Marco Evertz, Johannes Kasnatscheew, Xin Qi, Martin Grutzke, Martin Winter, Sascha Nowak, Graphite Recycling from Spent Lithium-Ion Batteries, ChemSusChem, 9 (2016) 3473 〜 3484
  • [56]Yuanlong Liu, Deying Mu, Yunkun Dai, Quanxin Ma, Rujuan Zheng, Changsong Dai, Analysis on Extraction Behaviour of Lithium-ion Battery Electrolyte Solvents in Supercritical CO2 by Gas Chromatography, Int. J. Electrochem. Sci., 11 (2016) 7594 〜 7604
  • [57]Yuanlong Liu, Deying Mu, Ruhong Li, Quanxin Ma, Rujuan Zheng, Changsong Dai, Purification and Characterization of Reclaimed Electrolytes from Spent Lithium-Ion Batteries, J. Phys. Chem. C, 121 (2017) 4181〜4187
  • [58]Sascha Nowak, Martin Winter, The Role of Sub- and Supercritical CO2 as “Processing Solvent” for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes, Molecules, 22 (2017) 403
  • [59]Ruihan Zhang, Xingyi Shi, Oladapo Christopher Esan, and Liang An, Organic Electrolytes Recycling From Spent Lithium-Ion Batteries, Global Challenges, 6 (2022) 2200050
  • [60]Deying Mu, Jianquan Liang, Jian Zhang, Yue Wang, Shan Jin, Changsong Dai, Exfoliation of Active Materials Synchronized with Electrolyte Extraction from Spent Lithium-Ion Batteries by Supercritical CO2, ChemistrySelect, 7 (2022) e202200841
  • [61]Bo Niu, Zhenming Xu, Jiefeng Xiao, Yufei Qin, Recycling Hazardous and Valuable Electrolyte in Spent Lithium-Ion Batteries: Urgency, Progress, Challenge, and Viable Approach, Chem. Rev., 123 (2023) 8718〜8735
  • [62]Yuanpeng Fu, Jonas Schuster, Martina Petranikova, Burcak Ebin, Innovative recycling of organic binders from electric vehicle lithium-ion batteries by supercritical carbon dioxide extraction, Resources, Conservation & Recycling 172 (2021) 105666
  • [63]P. Cattaneo, F. D'Aprile, V. Kapelyushko, P. Mustarelli, E. Quartarone, Supercritical CO2 technology for the treatment of end-of-life lithium-ion batteries, RSC Sustainability, 2 (2024) 1692〜1707
  • [64]Yuanpeng Fu, Xianshu Dong, Burcak Ebin, Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System, Molecules, 29 (2024) 1638
  • [65]65) Nils Zachmann, Robert V. Fox, Martina Petranikova, Burcak Ebin, Implementation of a sub-and supercritical carbon dioxide process for the selective recycling of the electrolyte from spent Li-ion battery, Journal of CO2 Utilization 81 (2024) 102703
  • [66]Jie Yu, Kai Huang, Jie Zheng, Lingen Zhang, Advance technology for treatment and recycling of electrolyte and organic matters from spent lithium-ion battery, Current Opinion in Green and Sustainable Chemistry, 47 (2024) 100914
  • [67]Qingxin Zheng, Yoshiki Suga, Yu Su, Hiroya Yamaguchi, Masaru Watanabe, Simultaneous Material and Chemical Recycling of Waste PET/PE Multi-layer Films under Hydrothermal Conditions, Angew. Chem. Int. Ed. 2024, e202410888, https://doi.org/10.1002/anie.202410888
  • [68]Antonio Jaime-Azuara, Maria Lemming, Reinhard Wimmer, Komeil Kohansal, Mogens Hinge, Thomas Helmer Pedersen, Continuous hydrothermal processing of poly(ethylene terephthalate) (PET) under subcritical water conditions: A proof-of-principle closed-loop study, Chemical Engineering Journal 495 (2024) 153223
  • [69]Ben Said Anouar, Cecile Guinot, Jean-Christophe Ruiz, Frederic Charton, Patrice Dole, Catherine Joly, Chalamet Yvan, Purification of post-consumer polyolefins via supercritical CO2 extraction for the recycling in food contact applications, J. of Supercritical Fluids 98 (2015) 25〜32
  • [70]Cinthya Soreli Castro Issasi, Mitsuru Sasaki, Armando T. Quitain, Tetsuya Kida, Noriyuki Taniyama, Removal of impurities from low-density polyethylene using supercritical carbon dioxide extraction, The Journal of Supercritical Fluids 146 (2019) 23〜29
  • [71]Ayah Alassali, Noor Aboud, Kerstin Kuchta, Philip Jaeger, Ahmad Zeinolebadi, Assessment of Supercritical CO2 Extraction as a Method for Plastic Waste Decontamination, Polymers 2020, 12, 1347; doi:10.3390/polym12061347
  • [72]Srishti Singh, Joel Pereira, Teresa Brandao, Ana Leite Oliveira, Fatima Pocas, Recycling of polypropylene by supercritical carbon dioxide for extraction of contaminants from beverage cups. A comparison with polyethylene terephthalate and polylactic acid, J Sci Food Agric 2023; 103: 1127〜1138
  • [73]Emilie Scheunemann Lovato, Laureane Matter Donato, Poliana Pollizello Lopes, Eduardo, Hiromitsu Tanabe , Daniel Assumpcao Bertuol, Application of supercritical CO2 for delaminating photovoltaic panels to recover valuable materials, Journal of CO2 Utilization 46 (2021) 101477
  • [74]Axel Briand, Antoine Leybros, Claire Audoin, Jean Christophe Ruiz, Fabrice Lamadie, Agnes Grandjean, CO2 absorption into a polymer within a multilayer structure: The case of poly(ethylene-co-vinyl acetate) in photovoltaic modules, The Journal of Supercritical Fluids 179 (2022) 105380
  • [75]Axel Briand, Antoine Leybros, Olivier Doucet, Jean-Christophe Ruiz, Pauline Fontaine-Giraud, Lucas Liotaud, Agnes Grandjean, Versatility assessment of supercritical CO2 delamination for photovoltaic modules with ethylene-vinyl acetate, polyolefin or ethylene methacrylic acid ionomer as encapsulating polymer, Journal of Cleaner Production 410 (2023) 137292
  • [76]Mathilde Rosenberg Johansen, Thomas Budde Christensen, Tiffany Marilou Ramos, Kristian Syberg, A review of the plastic value chain from a circular economy perspective, Journal of Environmental Management 302 (2022) 113975
  • [77]Anissa Nurdiawati, Tarun Kumar Agrawal, Creating a circular EV battery value chain: End-of-life strategies and future perspective, Resources, Conservation & Recycling 185 (2022) 106484
  • [78]Tom Hunger, Marlen Arnold , Martin Ulber, Circular value chain blind spot A scoping review of the 9R framework in consumption, Journal of Cleaner Production 440 (2024) 140853

前のページへ 1|2|3|4       

Copyright © ITmedia, Inc. All Rights Reserved.