世界を変えるAI技術「ディープラーニング」が製造業にもたらすインパクト(1/5 ページ)
人工知能やディープラーニングといった言葉が注目を集めていますが、それはITの世界だけにとどまるものではなく、製造業においても導入・検討されています。製造業にとって人工知能やディープラーニングがどのようなインパクトをもたらすか、解説します。
人工知能の躍進を進める「ディープラーニング」
「人工知能」「ディープラーニング」というキーワードが注目を集めています。ディープラーニングは、ここ数年で人工知能を大きく躍進させるテクノロジーとして注目されるようになりましたが、特にここ1年の人工知能の躍進は目を見張るものがあります。
ディープラーニングの名を広めたIMAGENETチャレンジ(コンピュータビジョンによる画像認識コンテスト)ではMicrosoftとGoogleのグループによる人工知能が、とうとう人間の認識レベルを超える結果を達成しました。加えて、ディープラーニングは画像認識の分野だけではなく他の分野でも利用されています。
トヨタ自動車はディープラーニング用フレームワークを開発するPreferred Networkと協力し、2016年1月のCESで強化学習を利用した自動運転のデモを行いました(2017年のCES、主役は自動運転に替わって人工知能になる?)。またポップカルチャーにも影響を与え、Perfumeなどのデジタル演出を手掛けるRhizomatiks Researchがディープラーニングを作品作りに利用しています。
そして記憶に新しい、AlphaGoの歴史的な偉業です。あと10年は人間に太刀打ちできないだろうといわれていた囲碁の世界で、DeepMindの開発したAlphaGoが韓国のイ・セドル9段を破ったのです。
もはやディープラーニングは1つのアルゴリズムや、1つのフィールドだけで使われるものではなく、もっともっと大きな潮流となっているのです。
ディープラーニングの特徴――新しいコンピューティングモデル
ディープラーニングは新しいコンピューティングモデルといえるものです。
従来の手法はそれぞれの分野の見識をもつ専門家(ドメインエキスパート)がそれぞれ違うソフトウェアをひとずつ書いて実現する、というものでした。一方、ディープラーニングはビッグデータと、それを入力して自ら学んでいくことのできる多層構造のニューラルネットワークを大規模に処理することで、より一般的な方法で多くのものに対応することが可能です。
Baiduは1つのニューラルネットで英語と中国語の音声認識を可能にしました。このように中国語のエキスパートと英語のエキスパートをそれぞれ必要とするのではなく、1人の言語エキスパートがいればいいのです。物体認識のアルゴリズムはAlphaGoでも使われ、それはアタリのゲームをプレイする時も同じ、1つの汎用的なアルゴリズムがさまざまな問題に対応するのです。
従来との違いは、それぞれの専門家が時間をかけてアルゴリズムをチューニングしていくのに対し、ディープラーニングではビッグデータと巨大なニューラルネットワークを処理可能な計算能力によってそれを実現していくところです。ソフトウェア開発に対する非常に大きな違いです。
この方法の大きなメリットを一目で理解していただけるのが、下のグラフです。青い点は従来型のコンピュータビジョンのアルゴリズムを専門家が時間をかけてチューニングをして、認識率を上げていったものに対し、緑の点はディープラーニングがビッグデータの学習をGPUのパワーを利用して実行して、人間を超える成果を出したことを表しています。
関連記事
- 人工知能の奇跡的な復権
囲碁王者への勝利を果たすなどAI(人工知能)への注目は依然として高くありますが、研究史を知る身からすれば、AIへの興奮はジェットコースターのようなものであるとも感じられます。多岐にわたる成果を挙げ始めた現代のAIは何が違うのでしょうか。 - 人工知能は製造現場でどう役に立つのか
人間の知的活動を代替するといわれる人工知能が大きな注目を集めている。ただ、製造現場で「使える」人工知能は、一般的に言われているような大規模演算が必要なものではない。「使える人工知能」に向けていち早く実現へと踏み出しているファナックとPFNの取り組みを紹介する。 - 「学び続ける小さな人工知能」を実現する、組み込みボード「NVIDIA Jetson TX1」
NVIDIAは開発プラットフォーム「NVIDIA Jetson TX1」の国内販売を開始する。GPUによる画像処理はもちろんのこと、CUDAプラットフォームを利用することで実機にデプロイした後も学び続けるディープラーニングを構築できる。 - 「コンパクトな人工知能」実現へ、組み込み機器でディープラーニング
三菱電機がディープラーニングを組み込み機器単体でも実用可能なものとする手法を開発。自動車や産業用ロボット、監視カメラなどへの「人工知能」搭載を進める。 - ディープラーニングによる特徴抽出を組み合わせ画像認識精度が向上
シーイーシーは、外観検査を自動化する画像処理技術とディープラーニングによる学習アルゴリズムを活用した画像検査システム「WiseImaging」を発表した。従来製品に比べ、認識精度が約30%向上している。
Copyright © ITmedia, Inc. All Rights Reserved.