教師なし画像分類AIの精度を従来比3倍に、東芝が半導体製造プロセスで実証へ:人工知能ニュース(2/2 ページ)
東芝は、画像分類AIのアルゴリズムを開発する際に学習データに人手でタグ付けなどを行う必要がない「教師なし画像分類AI」の分類精度を大幅に高める手法「cIDFD」を開発したと発表した。
製造分野向けの背景パターン画像は良品の検査画像でOK
cIDFDの効果を確認するために、半導体製造プロセスを模したベンチマーク画像による評価を行った。半導体の回路パターンをイメージした縞模様を持つ背景パターン画像と、不具合の基になる微粒子や異物をイメージした手書き数字が縞模様の背景画像の上に重なる画像を使用して分類精度の検証を行ったころ、分類精度を従来の27.6%から83.0%に向上させることができた。
また、自然風景の中にいる鳥を分類する教師なし画像分類AIの事例でも、背景パターン画像として鳥の画像と無関係な風景画像を組み合わせることで、分類精度を従来の48.6%から73.8%に高められるという結果を確認している。これらの他、帽子の有無+顔で2つに分類する場合は95%以上という分類精度を達成できているという。
なお、学習に用いる背景パターン画像は目的画像にある背景パターンと厳密に一致する必要がない。製造ラインの検査に適用するのであれば、これまでに蓄積された良品の検査画像を背景パターンに用いればよいので、背景パターン画像の選定作業にかかる時間を削減できるとする。
cIDFDを用いた教師なし画像分類AIにより、製造ラインの検査で検出した欠陥や不良の分類を自動化できるようになり、生産技術の担当者は分類結果を基にしたより高度な分析作業などに労力をかけられるようになる。その結果として、品質管理の精度と効率を大きく向上することが期待できる。また、天気や季節変動による背景の変動の影響で分類が困難だった監視カメラ画像への適用も見込めるという。
なお、cIDFDの詳細については、2024年5月7〜10日に台湾で開催されるデータマイニング分野の国際会議「PAKDD(Pacific Asia Conference on Knowledge Discovery and Data Mining) 2024」で発表される予定だ。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 多くの産業分野で導入が進むAI、2024年に注目すべき3つのトレンド
多くの産業分野で導入が進むAI(人工知能)はさまざまな変革をもたらしている。本稿では2024年のAIに関する注目すべき3つのトレンドを取り上げる。 - 機械学習の2つの壁「分類モデルの選定」と「過学習」への対処法
さまざまなデータを用いた機械学習でスマートな製品開発を目指す上で課題になるのが、「分類モデルの選定」と「過学習」への対応だ。本稿では、分類モデルと過学習について概説するとともに、基礎的な対処法について説明する。 - 教師なし学習でも「世界最高クラス」の精度で不良品を見分ける画像分類AI
東芝は2021年4月28日、教師なし学習でも高精度でグループ化できる画像分類AI(人工知能)を開発したと発表。ラベル付け作業を行っていない画像データから、高精度に不良品や製品欠陥を検出することが可能になる。 - 教師データなしで異常値を検出できるAI技術を開発
富士通研究所は、教師データなしで高次元データの特徴を正確に獲得するAI技術「DeepTwin」を開発した。情報圧縮技術と深層学習を融合し、ネットワークへの不正アクセスや、医療データの異常値をAIで検知する。 - ハンドルを取られる路面の穴を高精度に検知、東芝が高速道路向けAI
東芝と東芝デジタルソリューションズは高速道路の路面の穴をリアルタイムかつ高精度に検知する「路面変状検知AI」を開発した。 - AIが機器の稼働音を解析して劣化の兆候を検出、ノイズによる誤検知も低減
東芝は、機器の稼働音を解析し、高精度に劣化の兆候を捉える音響劣化推定AI「VAE-DE」を開発した。音響ノイズや電気的ノイズが稼働音に混入した場合も、誤検知せずに機器の劣化の兆候を早期に捉える。