教師データなしで異常値を検出できるAI技術を開発:人工知能ニュース
富士通研究所は、教師データなしで高次元データの特徴を正確に獲得するAI技術「DeepTwin」を開発した。情報圧縮技術と深層学習を融合し、ネットワークへの不正アクセスや、医療データの異常値をAIで検知する。
富士通研究所は2020年7月13日、教師データなしで高次元データの特徴を正確に獲得するAI(人工知能)技術「DeepTwin(ディープツイン)」を開発したと発表した。情報圧縮技術と深層学習を融合させたことで、ネットワークにおける不正アクセスや、医療データにおける異常値をAIで検知できるようになる。
近年、コスト効率の良いAI学習のために、正解ラベルを付けない教師なし学習に注目が集まっている。一方、AIによる解析の対象となる数十次元の通信データ、数百万次元の画像データといった高次元データについては、計算が指数関数的に増加する「次元の呪い」を回避するため、次元を減らしつつ、誤判定の少ない技術が求められている。
DeepTwinは、高次元のデータの削減すべき次元数と次元削減後のデータの分布を深層学習で最適化することで、教師データなしでデータの特徴を正確に捉える技術だ。
同社の情報圧縮技術を基に、分布と確率が未知の高次元データに対してニューラルネットワークに基づくオートエンコーダーで次元を削減しても、元の高次元データの特徴を正確に捉え、次元を最小限に削減できていることを数学的に証明した。
さらに、データの特徴を正確に捉えるため、高次元データの削除すべき次元数と削除後のデータの分布を制御するパラメーターを導入し、圧縮後の情報量を評価項目に定め、深層学習で最適化した。
同技術を実際の通信アクセスデータ、甲状腺数値データ、不整脈データに適用し、従来の深層学習ベースの誤り率と比較して、最大で37%改善することを確認している。
同社は、2021年度中の実用化を目指すとともに、今回の成果を同社のAI技術「FUJITSU Human Centric AI Zinrai(ジンライ)」に活用するとしている。
関連記事
- 教師データが足りないと「異常予測」は難しい、ならば「異常検知」から始めよう
製造業が機械学習で間違いやすいポイントと、その回避の仕方、データ解釈の方法のコツなどについて、広く知見を共有することを目指す本連載。第3回は、「異常予測」と「異常検知」について取り上げる。教師データ量の不足が課題になる「異常予測」に対して、「異常検知」は教師データなしでも始められることが特徴だ。 - 機械学習で入ってはいけないデータが混入する「リーケージ」とその対策
製造業が機械学習で間違いやすいポイントと、その回避の仕方、データ解釈の方法のコツなどについて、広く知見を共有することを目指す本連載。第1回では「リーケージ」について取り上げる。 - 機械学習による逆問題への対処法、材料配合や工程条件を最適化せよ
製造業が機械学習で間違いやすいポイントと、その回避の仕方、データ解釈の方法のコツなどについて、広く知見を共有することを目指す本連載。第2回は、製造業で求められる材料配合や工程条件の予測に必要な、機械学習による逆問題への対処法ついて取り上げる。 - AIと機械学習とディープラーニングは何が違うのか
技術開発の進展により加速度的に進化しているAI(人工知能)。このAIという言葉とともに語られているのが、機械学習やディープラーニングだ。AIと機械学習、そしてディープラーニングの違いとは何なのか。 - 機械学習はどうやって使うのか――意外と地道な積み重ね
前編では、AI(人工知能)と機械学習、ディープラーニングといった用語の説明から、AIを実現する技術の1つである機械学習が製造業を中心とした産業界にも徐々に使われ始めている話をした。後編では、機械学習を使ったデータ分析と予測モデル作成について説明する。 - 韓国AIベンチャーの挑戦、少ない学習データで金属部品の外観検査精度99%を実現
韓国のAIスタートアップ企業であるSkelterLabsが、独自に開発したAIエンジンを柱に、日本国内での事業展開を見据えた活動を開始した。「2019 Japan IT Week 春 後期」にも出展し、韓国企業などに採用されている同社の技術を紹介。製造業をはじめAI活用を模索する日本企業に向けて、積極的に提案を進めて行く考えだ。
関連リンク
Copyright © ITmedia, Inc. All Rights Reserved.