省エネオンチップ量子光メモリ素子に向け、電子と超音波のハイブリッド状態を実現:研究開発の最前線(2/2 ページ)
NTTと日本大学は、通信波長の光に共鳴する希土類元素のEr(エルビウム)を添加した超音波素子を作製することにより、数msの長い寿命を持つ光励起電子とGHzレベルの超音波が混ざった状態(ハイブリッド状態)を生成することに成功したと発表した。
7〜10年後には量子光メモリ動作の実証へ
今回の研究成果で重要な役割を果たした技術は3つある。1つ目は、超音波素子の作製において、NTTの有する高品質なAlN圧電膜形成技術を活用したことだ。これまで内殻電子の光応答を機械振動で制御する際に用いていた機械振動子の周波数はMHzレベルにとどまっていたが、AlN圧電膜上に配置したくし型電極による表面弾性波で2GHzの超音波を利用できるようになった。
2つ目は、同位体純化したErを用いて光吸収スペクトルを狭線化したことだ。一般的なErは複数の同位体が混ざった状態になっておりその光吸収スペクトルの線幅が1G〜3GHzに広がってしまう。今回用いた超音波素子では、質量数が170のErのみをYSO結晶に添加することで、光吸収スペクトルの線幅を500MHzに狭線化した。これによって、生成できる超音波の周波数2GHzと比べて光吸収スペクトルが大幅に小さくなり、ハイブリッド状態による吸収がはっきりと観測できるようになった。
3つ目は、光周波数コムを用いたレーザー光の周波数安定化機構を日本大学と共同開発したことだ。レーザー周波数は、室温の変化などによりわずかにゆらぐが、Erの狭い光共鳴を測定するには、測定レーザー用の周波数を安定させる必要がある。そこで、周波数精度の非常に高い光周波数コムレーザーに測定用レーザーを同期させることで、測定用レーザーの周波数ゆらぎを1kHzから1Hzまで低減し、Erの光学特性を高精度に測定できるようにした。
今回の研究成果は、省エネオンチップ量子光メモリ素子を実現する上で、光から電子への変換を超音波で制御するという、量子光メモリの書き込み制御の基礎的な手法を見いだしたことになる。今後は、ハイブリッド状態の均一性の向上、読み出し制御となる超音波を用いた電子から光への変換制御、量子光源(単一光子)の適用といった技術開発を経た上で、これらの技術を組み合わせることで量子光メモリ動作の実証が可能になる。量子光メモリ動作の実証まで7〜10年の期間がかかるという。
なお、今回の研究成果は、2024年1月18日付(現地時間)で米国科学誌の「Physical Review Letters」にオンラインで掲載された。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 100GHz100コアの「スーパー量子コンピュータ」実現へ、光通信技術が道を開く
NTTと東京大学、理化学研究所、JSTは、最先端の商用光通信技術を光量子コンピュータに応用することで、世界最速となる43GHzのリアルタイム量子信号の測定に成功したと発表した。 - 量子コンピュータに新たな道を開くか、電子の飛行量子ビット動作を世界初実証
NTTとフランスのCEA Saclay、NIMS、KAISTは、グラフェンのp-n接合と、ローレンツ波形の電圧パルスによって生成される単一電子源のレビトンを用いることで、電子の飛行量子ビット動作を世界で初めて実証したと発表した。 - 1000兆分の1アンペアレベルの微小電流標準の確立へ、産総研とNTTが前進
産総研とNTTは、シリコン量子ドットを用いて電子を1粒ずつ精密に制御して大きさの決まったpA単位の微小電流を発生させることに成功したと発表した。fA(1fAは1000兆分の1A)までを含めた、nA以下の微小な電流を正確に発生、測定するための“微小電流標準”の開発につながる成果となる。 - NTTが350時間の連続動作が可能な人工光合成デバイスを開発
NTTは、350時間の連続動作が可能な人工光合成デバイスを開発した。半導体光触媒と金属触媒を電極として組み合わせ、気体状態にある二酸化炭素の効率的な変換を可能とした。 - “将棋の封じ手”暗号プロトコルが量子コンピュータに対応、一方向性関数で構成
NTTは、量子コンピュータに対する安全性と通信効率を両立する「コミットメント」を、暗号理論における最も基本的な構成要素である「一方向性関数」のみを用いて世界で初めて構成したと発表した。 - NTTが光電融合デバイスの専門企業を設立「自動車やスマホにも光通信を広げる」
NTTグループで光電融合デバイスを手掛けるNTTイノベーティブデバイスが同社設立の背景や事業方針などについて説明。光電融合デバイスの適用領域を通信からコンピューティングに広げることで、早期に年間売上高1000億円の突破を目指す。