検索
ニュース

省エネオンチップ量子光メモリ素子に向け、電子と超音波のハイブリッド状態を実現研究開発の最前線(1/2 ページ)

NTTと日本大学は、通信波長の光に共鳴する希土類元素のEr(エルビウム)を添加した超音波素子を作製することにより、数msの長い寿命を持つ光励起電子とGHzレベルの超音波が混ざった状態(ハイブリッド状態)を生成することに成功したと発表した。

Share
Tweet
LINE
Hatena

 日本電信電話(NTT)と日本大学は2024年1月19日、通信波長の光に共鳴する希土類元素のEr(エルビウム)を添加した超音波素子を作製することにより、数msの長い寿命を持つ光励起電子とGHzレベルの超音波が混ざった状態(ハイブリッド状態)を生成することに成功したと発表した。電子(Electron)と超音波(Phonon)のハイブリッド状態を実現すれば、超音波を用いて電子の数や位相などの状態(コヒーレンス)を操作できるため、光通信を用いて量子情報を送る際に必要な量子光メモリ(光量子中継)への応用が期待できる。今回の研究成果は、素子の動作に必要な電圧が0.3Vと大幅に低く抑えられており、省エネかつオンチップの量子光メモリ素子の開発に道を開くものとなる。

作成した超音波素子の概略図(左)と将来的な量子光メモリ素子としての利用イメージ(右)
作成した超音波素子の概略図(左)と将来的な量子光メモリ素子としての利用イメージ(右)[クリックで拡大] 出所:NTT

 量子光メモリの素材として広く用いられているのが、内殻電子を持つ希土類元素である。中でもErは、通信波長帯の光に共鳴することから光ネットワークとの適合性に優れている。外殻電子によって遮蔽された希土類元素の内殻電子は外界の影響を受けにくく、長い寿命と高い量子コヒーレンスが得られるという特徴がある一方で、外殻電子の遮蔽効果により内殻電子の外部制御が難しいという課題もある。実際に、電場を用いて結晶中のErの光共鳴周波数を1GHz変調するためには100V以上の高電圧が必要になる。

 NTTは、この外部制御性の低さを解決すべく、内殻電子の光応答を機械振動で制御することに取り組んできた。そのために必要なのが、今回の研究成果で生成することに成功した電子と超音波のハイブリッド状態である。

電子と超音波のハイブリッド状態
電子と超音波のハイブリッド状態[クリックで拡大] 出所:NTT

 実験に用いた超音波素子は、Erを添加したYSO(イットリウムシリケイト)結晶の上にAlN(窒化アルミニウム)の圧電薄膜を形成した上で、その上にくし型電極を配置した構成を取る。くし型電極に電圧をかけると、電極パターンに合わせて圧電薄膜が変形して、くし型電極の周期に応じた周波数の超音波(表面弾性波)を発生させられる。これにより結晶表面付近にひずみが誘起されて、ひずみを受けたErの共鳴周波数が超音波の周波数で変調された結果、Erの光吸収スペクトルには、本来のErの吸収ピークに加え、等間隔に離れた複数の吸収ピークが現れる。これらの吸収ピークの間隔は超音波の周波数に一致しており、Erの電子状態と超音波が混ざったハイブリッド状態による吸収を示している。

作成した超音波素子によりハイブリッド状態を観測
作成した超音波素子によりハイブリッド状態を観測[クリックで拡大] 出所:NTT

 この実験結果と超音波の深さ方向のひずみ強度分布を取り入れた解析により、結晶の最表面付近ではハイブリッド状態の程度が十分に大きくなっており、超音波を用いて励起電子の数や位相を操作できる可能性が示されたという。

ハイブリッド状態の空間依存性
ハイブリッド状態の空間依存性[クリックで拡大] 出所:NTT

Copyright © ITmedia, Inc. All Rights Reserved.

       | 次のページへ
ページトップに戻る