ランダムフォレストで自動追加学習を可能にしたエッジAI向けアルゴリズムを開発:人工知能ニュース
エイシングは、機械学習アルゴリズムの1つである「ランダムフォレスト」で自動追加学習を可能にしたエッジAI向けアルゴリズム「SARF」を開発した。パラメーターチューニングが少ないため、初期学習モデルが迅速に構築でき、運用上の変化にも柔軟に対応できる。
エイシングは2020年7月7日、機械学習アルゴリズムの1つである「ランダムフォレスト」で自動追加学習を可能にしたエッジAI(人工知能)向けアルゴリズム「SARF(Self Adaptive Random Forest)」を開発したと発表した。
ディープラーニングは、予測精度は高いが、事前学習したデータから予測するため、環境が変化した場合に柔軟に対応するのが難しい。
一方、自動追加学習(オンライン学習)は、学習済みのデータを変化に応じて更新し、即時性や高いセキュリティが求められる環境にも対応できるため、近年、自動運転やFAの分野で需要が高まっている。
SARFは、研究者や技術者の間で広く普及しているランダムフォレストにおいて、自動追加学習を可能にしたアルゴリズムだ。データ処理性能や精度の高さ、パラメーターチューニングが少ないといったランダムフォレストの特徴を継承しつつ、産業用ロボットの経年劣化によるチューニングやエアコンの温湿度調整などを自ら学習して自動化できる。パラメーターチューニングが少ないため、初期学習モデルが迅速に構築でき、その後の運用で変化が生じた場合にも対応可能となっている。
広く利用されているランダムフォレストで自動追加学習が可能になったことから、クラウド側でなくエッジ側で情報処理を実行する、エッジAIのさらなる広がりが期待される。
同社は、社内にエッジAIアルゴリズム専門の開発チーム「Algorithm Development Group(ADG)」を有しており、自動追加学習を特徴としたアルゴリズム「AiiR(AI in Real-time)」シリーズを開発している。SARFは、同シリーズの新たなアルゴリズムとして開発された。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- AIと機械学習とディープラーニングは何が違うのか
技術開発の進展により加速度的に進化しているAI(人工知能)。このAIという言葉とともに語られているのが、機械学習やディープラーニングだ。AIと機械学習、そしてディープラーニングの違いとは何なのか。 - 組み込みAIは必要不可欠な技術へ、推論に加えて学習も視野に
2017年初時点では芽吹きつつあった程度の組み込みAI。今や大きな幹にまで成長しつつあり、2019年からは、組み込み機器を開発する上で組み込みAIは当たり前の存在になっていきそうだ。 - ラズパイゼロで推論も学習もできる組み込みAI「DBT」、“AIチップ”で開発容易に
AIベンチャーのエイシングが、組み込み機器などのプロセッサでAIの推論実行だけでなく学習も行える独自技術「DBT」について説明。このDBTによるアプリケーション開発を容易に行えるAIモジュール「AiiR(エアー)チップ」を開発したと発表した。 - 組み込み機器で学習できるAI「DBT」、予測精度1.5倍の「DBT-HQ」を投入
AIベンチャーのエイシングは、組み込み機器などのプロセッサでAIの推論実行だけでなく学習も行える同社の独自技術「DBT」において、従来比で予測精度を50%向上できる「DBT-HQ」を追加すると発表した。 - 自律学習可能な組み込みAIが「Cortex-Aシリーズ」への実装に対応
エイシングは、組み込み機器などのプロセッサでAIの自律学習が行える同社の独自技術「DBT」を、Armの「Cortex-Aシリーズ」へ実装し、提供を開始した。 - 軽量組み込みAI技術が「Cortex-M」に対応、産業機械や自動車、家電で活用可能に
エイシングは、組み込みAIの自律学習と予測を可能にする独自技術「DBT」を、Armの「Cortex-Mシリーズ」へ実装し、提供を開始した。産業機械や自動車、家電などの制御向けMCUへ、クラウドを介さないAIの組み込みが容易になる。