電力効率が汎用GPUの10倍以上、量子化DNNエンジン搭載のAIチップを開発:人工知能ニュース
ソシオネクストは、ディープラーニング推論処理向けの「量子化DNNエンジン」を搭載したAIチップを試作し、動作と性能を確認した。高度なAI処理を、小型で省電力のエッジコンピューティング機器単体で実行できるようになる。
ソシオネクストは2020年3月17日、ディープラーニング(深層学習)推論処理向けの「量子化DNN(ディープニューラルネットワーク)エンジン」を搭載したAI(人工知能)チップを試作し、動作と性能を確認したと発表した。
今回開発した量子化DNNエンジンには、低消費電力で高性能の深層学習に必要な低ビット化技術と、パラメーター圧縮技術を組み合わせた「量子化DNN技術」を使ったアーキテクチャが組み込まれている。また、効率的にデータを供給するオンチップメモリ回路技術により、メモリの使用量を大幅に削減できる。
作製したテストチップは、「YOLO v3」による物体検出において、検出速度が30fps、消費電力が5W以下と、汎用GPUと比べて10倍以上の電力効率を達成した。チップには「Arm Cortex-A53」クアッドコアCPUを搭載しているので、AI処理が1チップで済む。
また、TensorFlowをベースフレームワークとした低ビットの「Quantization Aware Training(量子化を考慮した学習)」や「Post Training Quantization(学習後の量子化)」を実行可能な深層学習ソフトウェア開発環境も用意した。これらの開発環境とテストチップを組み合わせることで、先進ドライバー支援システム(ADAS)、監視カメラ、FAにおいて、高度なエッジコンピューティングができるようになる。
今回の試作は、新エネルギー・産業技術総合開発機構(NECO)の委託事業「進化型・低消費電力AIエッジLSIの研究開発」によるもので、同社はパートナー企業とともに回路の最適化を進め、AIチップの完成を目指すとしている。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 機械学習とディープラーニング、どちらを使えばいいのか
研究開発プロジェクトを先に進めるためにどのようなAI技術を使用すればいいのだろうか。本稿では、その一助とすべく、機械学習とディープラーニング(深層学習)の違いについて概説し、それぞれをどのように適用すべきかについて説明する。 - 機械学習の2つの壁「分類モデルの選定」と「過学習」への対処法
さまざまなデータを用いた機械学習でスマートな製品開発を目指す上で課題になるのが、「分類モデルの選定」と「過学習」への対応だ。本稿では、分類モデルと過学習について概説するとともに、基礎的な対処法について説明する。 - 機械学習で入ってはいけないデータが混入する「リーケージ」とその対策
製造業が機械学習で間違いやすいポイントと、その回避の仕方、データ解釈の方法のコツなどについて、広く知見を共有することを目指す本連載。第1回では「リーケージ」について取り上げる。 - 機械学習による逆問題への対処法、材料配合や工程条件を最適化せよ
製造業が機械学習で間違いやすいポイントと、その回避の仕方、データ解釈の方法のコツなどについて、広く知見を共有することを目指す本連載。第2回は、製造業で求められる材料配合や工程条件の予測に必要な、機械学習による逆問題への対処法ついて取り上げる。 - 世界を変えるAI技術「ディープラーニング」が製造業にもたらすインパクト
人工知能やディープラーニングといった言葉が注目を集めていますが、それはITの世界だけにとどまるものではなく、製造業においても導入・検討されています。製造業にとって人工知能やディープラーニングがどのようなインパクトをもたらすか、解説します。 - 画像処理と機械学習に特化したエッジAIチップ、「売価は1000円以下を目標」
ArchiTekは、「イノベーション・ジャパン2019 〜大学見本市&ビジネスマッチング〜」(2019年8月29〜30日、東京ビッグサイト)において、同社が開発するエッジデバイス向けAI(人工知能)プロセッサの技術紹介を行った。競合のエッジAIチップと比較して電力性能やコスト面で優位性があると訴える。