マイコンでCBMを実現する異常検知アルゴリズム、逐次学習による高精度化も:人工知能ニュース
エイシングは、機器の状態を監視しながらメンテナンス時期を決定するCBM向けの異常検知アルゴリズム「MSAT++」を開発したと発表した。モデルサイズは数KBと省メモリであるとともに、正常データからモデルを構築しての異常検知が可能で、逐次学習によりモデルの精度を向上できることなどが特徴となっている。
エイシングは2021年11月16日、機器の状態を監視しながらメンテナンス時期を決定するCBM(Condition Based Maintenance:状態基準保全)向けの異常検知アルゴリズム「MSAT++」を開発したと発表した。モデルサイズは数KBと省メモリであるとともに、正常データからモデルを構築しての異常検知が可能で、逐次学習によりモデルの精度を向上できることなどが特徴となっている。
定期点検などで機器の保全作業を実施し、消耗部品は劣化状態に関係なく定期的に交換するTBM(Time Based Maintenance:時間基準保全)に対して、IoT(モノのインターネット)やAI(人工知能)によって機器の状態を監視し、最適なタイミングでメンテナンスを行えるCBMへの注目が集まっている。ただしCBMの導入では、大まかに分けて「設備からデータを収集・分析するための一連のシステムが複雑になってしまう」「トラブルが発生しない限り異常データが取れないため、異常検知モデル構築が困難」「搭載先の個体差/環境差などに合わせて数多くの異常検知モデルを構築する必要がある」という3つの課題が存在している。
MSAT++はこれら3つの課題を解決できる異常検知アルゴリズムである。まず、「設備からデータを収集・分析するための一連のシステムが複雑になってしまう」という課題については、モデルサイズが数KBと小さいことで解決できる。機械や装置、PLC、モーター、センサーなどに搭載されるマイコンで動作可能なので、IoTデータを蓄積するシステムやAIが動作するコンピュータなどを別途用意する必要がない。
「トラブルが発生しない限り異常データが取れないため、異常検知モデル構築が困難」という課題については、異常データがない状態でモデルを構築してCBMの運用を開始できる。運用中にデータを追加して逐次学習することで、モデルをより高精度にしていくことも可能だ。また、当初は教師なし学習によるモデルで運用を開始し、運用が進み正常データと異常データの判別が付くようになってから、逐次学習の際に正常と異常のラベル付けをしたデータを用いた教師あり学習も行える。
「搭載先の個体差/環境差などに合わせて数多くの異常検知モデルを構築する必要がある」という課題については、先述した逐次学習によって、搭載先の機械や運用環境、原材料のデータ特性を学習することで個体差/環境差へ適応することができる。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- いまさら聞けない「CBM」
IoTやAIの進展によって現在あらためて大きな注目を集めるようになった「CBM(状態基準保全)」。CBMが今なぜ注目を集めるのか、製造業にとってどういう効果をもたらすのかについて、5分で分かるように簡単に分かりやすく説明します。 - ミリ波レーダーで振動の非接触測定を実現、故障を予知する「CbM」向けに展開
アナログ・デバイセズがモーターなどの振動の変化から不具合発生を事前に検知できるCbM(状態基準保全)用のミリ波レーダー「miRadar CbM」について説明。さまざまなレーダー製品を手掛けるサクラテックと共同開発したもので、CbMで広く用いられている加速度センサーを搭載する振動計と異なり、非接触で振動を計測できる点が最大の特徴となる。 - リアルタイムに学習できるエッジAIが進化、メモリがKBレベルのマイコンにも対応
エイシングは新たなエッジAIアルゴリズム「MST」を開発した。これまでに発表した「DBT」や「SARF」などと比べて使用するメモリを大幅に削減できるため、フラッシュメモリやSRAMの容量がKBレベルの小型マイコンにも実装できる。 - 経年劣化にも対応する「リアルタイム学習AI-PID制御」、エイシングが特許取得
エイシングは、PID制御を飛躍的に高度化できる「リアルタイム学習AI-PID制御」に関する特許を取得したと発表した。PID制御にAIアルゴリズムに基づく予測器を組み合わせる「AI-PID制御」に対して、制御対象の経年劣化などによって起こり得るAIアルゴリズムの予測精度低下を防ぐための追加学習を行える仕組みが特許取得の対象となる。 - エイシングの「MST」がランダムフォレストの完全上位互換へ、CEATEC AWARD受賞
エイシングは、「CEATEC 2021 ONLINE」に出展した独自の軽量エッジAIアルゴリズム「MST(Memory Saving Tree)」が、「CEATEC AWARD 2021」の「スタートアップ・ユニバーシティ部門賞グランプリ」を受賞したと発表した。 - 過去に凍結したAIのPoC案件の再生支援サービスを試験導入
エイシングは、企業が過去に凍結したPoC案件の再生支援サービス「Re-PoC」の試験導入を開始する。同社独自のエッジAIアルゴリズムを用いるもので、過大なモデルサイズや推論速度不足などで頓挫したPoC案件の再生を支援する。