東芝がトリプルゲートIGBTを開発、3つのゲート電極でスイッチング損失を4割削減:組み込み開発ニュース(2/2 ページ)
東芝は、インバーターやDC-DCコンバーターなどの電力変換器に広く用いられているパワー半導体のIGBTについて、電力のオンとオフが切り替わるスイッチング時の損失を従来比で最大40.5%低減できる「トリプルゲートIGBT」を開発したと発表した。今後、信頼性の確認など実用化に向けた開発を進めて、2023〜2024年に製品化を判断したい考え。
ダブルゲートIGBTを経てトリプルゲートIGBTへ
日本政府が2050年のカーボンニュートラルを目標に掲げるなど、脱炭素に向けた取り組みへの注目が急速に高まっている。この脱炭素を実現していく上で導入が進むであろう、太陽光発電システムのパワーコンディショナー、EV(電気自動車)やさまざまな産業機器のインバーター、サーバの電源などには、より効率の高い電力変換器が求められる。
この電力変換器の中でも、スイッチング周波数が数百〜10kHz、電力容量で数k〜数MWというボリュームゾーン向けに広く用いられているのがシリコンベースのIGBTである。シリコンパワー半導体よりも高効率な次世代パワー半導体であるSiC(炭化ケイ素)デバイスやGaN(窒化ガリウム)デバイスへの期待も高まっているが現時点では高価なため、今後もしばらくはIGBTの需要が継続的に伸長するとみられている。
シリコンIGBTで発生する電力損失は、大まかに分けてスイッチング損失と導通損失に分けられる。トリプルゲートIGBTは、スイッチング損失がキャリアである電子とホールの注入と消滅の速度に依存することに着目し、3つのゲート電極による制御でキャリアの高速での注入と消滅を実現しスイッチング損失の大幅な低減につなげた。また、トリプルゲートIGBTの開発の背景には、ゲート電極を2つ持ち、ターンオフ損失のみ低減可能なデュアルゲートIGBTへの取り組みもあった。「ダブルゲートIGBTを開発しなければトリプルゲートIGBTというコンセプトにたどり着けていなかった」(高尾氏)。
なお、トリプルゲートIGBTは、ゲート電極部を除きシリコンIGBTと構造はほぼ同じであり、ゲート電極部の配線パターンを形成するフォトマスクを変更するだけで製造できるため、ゲート電極を1つだけ持つ通常のシリコンIGBTに対して大幅なコストアップにはならない見通しだ。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 躍進する東芝パワー半導体、生産能力向上のカギは増床とIoT活用
東芝デバイス&ストレージのディスクリート半導体の販売が好調だ。生産能力の増強を進めており、2021年度には売上高2000億円、営業利益率10%の実現を目指している。増床や生産性改善などを進めるディスクリート半導体の拠点「加賀東芝エレクトロニクス」(石川県能美市)の取り組みを紹介する。 - インフィニオンが電動車向けSiCパワーデバイスを強化、武器はIGBTからの移行しやすさ
インフィニオンは、EV(電気自動車)向けのSiCパワーデバイスの展開を本格化させる。これまでハイブリッド車(HEV)など電動車向けに100万個以上の出荷実績があるIGBT搭載のモジュール「Hybrid PACK Drive」にSiC搭載版を用意し、自動車メーカーがこれまでと同じフットプリントのままインバーターをアップグレードできるようにする。 - ドレスデンのハイテク半導体製造の新工場で、完全自動製造プロセスが前進
Robert Boschは、ドイツのドレスデンの半導体製造の新工場において、シリコンウエハーが完全自動製造プロセスを初めて通過したと発表した。2021年後半に予定されている、量産開始に向けた重要なステップとなる。 - デンソーのSiCパワー半導体、新型ミライのFC昇圧コンバータで採用
デンソーは2020年12月10日、SiCパワー半導体を搭載した昇圧用パワーモジュールの量産を開始したと発表した。トヨタ自動車が同年12月9日に全面改良して発売した燃料電池車(FCV)「MIRAI(ミライ)」に搭載されている。 - 両面ゲートIGBTのスイッチング損失を最大62%低減、東京大学が新技術開発
東京大学 生産技術研究所は2020年12月7日、ゲート両面の動作タイミングを最適化することなどを通じて、両面ゲートIGBTのスイッチング損失を、片面ゲートIGBTと比較して最大62%低減することに成功したと発表。 - 三菱電機から「世界最高レベル」のトレンチ型SiC-MOSFET、信頼性と量産性も確保
三菱電機は、1500V以上の耐圧性能と、「世界最高レベル」(同社)の素子抵抗率となる1cm2当たり1.84mΩを両立するトレンチ型SiC-MOSFETを開発した。家電や産業用機器、自動車などに用いられるパワーエレクトロニクス機器の小型化や省エネ化に貢献する技術として、2021年度以降の実用化を目指す。