「Jetson Nano」でにゃんこを判別してLチカで知らせるエッジAIデバイスを作る:Jetson Nanoで組み込みAIを試す(5)(4/4 ページ)
NVIDIAが価格99ドルをうたって発表した組み込みAIボード「Jetson Nano」。本連載では、技術ライターの大原雄介氏が、Jetson Nanoの立ち上げから、一般的な組み込みAIとしての活用までを含めていろいろと試していく。第5回では、猫とその種類の判別結果をLED点灯(Lチカ)で知らせる機能を作成してみる。
それでは実証実験
以上でプログラムの変更は完了だが、起動の際には/opt/nvidia/jetson-gpio/の下にもライブラリのパスを通しておく必要がある。以下のコマンドを先に1回行っておかなければならない。
export PYTHONPATH="/opt/nvidia/jetson-gpio/lib/python/:${PYTHONPATH}"
これをやらないと、「RPi.GPIOが見つからない」と怒られる。
さて起動そのものは前回と同じで、以下のコマンドで行える。
./imagenet-camera.py --camera=/dev/video0
今回はウチのスタッフ(編注:大原氏の愛猫)が非常に非協力的だったので(図5)、スタッフの顔写真をモニターに映し、これを撮影してみた。
映像1がキジトラ(先代ちゅるる女王様)を撮影した場合で、黄色(cat)はかなり早いタイミングで認識するが、緑(tabby)はカメラをちょっと動かすと、やや遅れて認識するといった感じ。
一方、映像2は茶白の場合で、黄色はちゃんと点灯するけれどもtabbyとは認識されないので緑は点灯しない。こんな具合に、猫を判別してLEDを点灯させるエッジソリューション(??)が完成した。
ということで非常に簡単ではあるのだが、この程度のことまではJetson Nanoのキットでできる、というサンプルにはなったかと思う。もちろん、ありもののネットワークでは使えないという場合もあるので、その場合は学習からやり直す必要が出る場合もあるだろうが、そちらはJetson Nanoとは別のプラットフォームを構築して行うべきだろう。
今回はお手軽にLチカをやってみたが、通信なども原理的にはそう難しくはないと思う。もちろん、これも真剣にエッジAIデバイスを構築するにはいろいろ問題は出てくるかもしれないが、まずは簡単に試すにはJetson Nanoは非常に良い題材であろう、ということがお分かりいただけたのではないかと思う。
(連載完)
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- ≫連載「Jetson Nanoで組み込みAIを試す」バックナンバー
- 「Jetson Nano」にUSBカメラをつなげてにゃんこを認識させる
NVIDIAが価格99ドルをうたって発表した組み込みAIボード「Jetson Nano」。本連載では、技術ライターの大原雄介氏が、Jetson Nanoの立ち上げから、一般的な組み込みAIとしての活用までを含めていろいろと試していく。第4回は、Jetson Nanoに市販のUSBカメラを接続してさまざまな物体を認識させてみる。にゃんこもいるよ! - 「Jetson Nano」のCUDAコアで“Hello AI World”を動作させてみる
NVIDIAが価格99ドルをうたって発表した組み込みAIボード「Jetson Nano」。本連載では、技術ライターの大原雄介氏が、Jetson Nanoの立ち上げから、一般的な組み込みAIとしての活用までを含めていろいろと試していく。第3回は、Jetson NanoのCUDAコアを使って推論のサンプル“Hello AI World”を動作させてみる。 - 「Jetson Nano」を“まとも”に使えるようにする
NVIDIAが価格99ドルをうたって発表した組み込みAIボード「Jetson Nano」。本連載では、技術ライターの大原雄介氏が、Jetson Nanoの立ち上げから、一般的な組み込みAIとしての活用までを含めていろいろと試していく。第2回は、機械学習を試す前に“まとも”に使えるようにする。 - まずは「Jetson Nano」の電源を入れて立ち上げる
NVIDIAが価格99ドルをうたって発表した組み込みAIボード「Jetson Nano」。本連載では、技術ライターの大原雄介氏が、Jetson Nanoの立ち上げから、一般的な組み込みAIとしての活用までを含めていろいろと試していく。第1回は、まず電源を入れて立ち上げるところから始める。 - 組み込みAIは必要不可欠な技術へ、推論に加えて学習も視野に
2017年初時点では芽吹きつつあった程度の組み込みAI。今や大きな幹にまで成長しつつあり、2019年からは、組み込み機器を開発する上で組み込みAIは当たり前の存在になっていきそうだ。